
Computer Architecture
RISC-V Assembler Directives

CS-173 Fundamentals of Digital Systems

Mirjana Stojilović

Spring 2025

https://mirjanastojilovic.github.io/cs173/index.html

© Supranee / Adobe Stock

Previously on FDS
• Load (reading) from memory

• Store (writing) in memory

• Conditional branches, unconditional jumps

2CS-173, © EPFL, Spring 2025

© Anastasi17 / Adobe Stock

3

Quick Outline

▪ From Assembly Source Code to Executable

▪Assembler Directives
• Example

▪ Pseudoinstructions
• li: Load immediate

• la: Load address

▪Do-while loop
• Example

▪ If-Then-Else
• Example

CS-173, © EPFL, Spring 2025

Assembler Directives

4CS-173, © EPFL, Spring 2025

© Anastasi17 / Adobe Stock

5

From Assembly Source Code To Executable
Compilation, Assembly Process

CS-173, © EPFL, Spring 2025

li t0, 7
li t1, 1
sll t2, t0, t1
sll t3, t2, t1
sll t3, t3, t1
add t3, t3, t2
nop

Address +0 +1 +2 +3
0x00000018 00010011 00000000 00000000 00000000
0x00000014 00110011 00001110 01111110 00000000
0x00000010 00110011 00011110 01101110 00000000
0x0000000C 00110011 10011110 01100011 00000000
0x00000008 10110011 10010011 01100010 00000000
0x00000004 00010011 00000011 00010000 00000000
0x00000000 10010011 00000010 01110000 00000000
---------- -- -- -- --
---------- -- -- -- --

Source code
in RISC-V assembly

The executable (the RISC-V program)
in binary format, in memoryAssembler

Responsible for the translation from
source code to the executable in binary;

the process is also known as compilation

6

Von-Neuman Architecture

▪Recall: Unified memory

• Instructions and data reside
in the same memory

▪Assembly source code often
contains more than one section

1. Code (program instructions)

2. Data (initialization, results)

CS-173, © EPFL, Spring 2025

Code

Data

mem[0]

mem[1]

mem[2]

mem[232 - 3]

mem[232 - 2]

mem[232 - 1]

Index
(Address)

0

1

2

232 - 1

232 - 2

232 - 3

… …

Memory

7

Von-Neuman Architecture

▪ The compilation process is responsible
for creating separate memory regions
for code and data

▪When writing a program in assembly,
one can mix code and data sections as
we like, identifying them with special
labels (assembler directives)

CS-173, © EPFL, Spring 2025

Code

Data

mem[0]

mem[1]

mem[2]

mem[232 - 3]

mem[232 - 2]

mem[232 - 1]

Index
(Address)

0

1

2

232 - 1

232 - 2

232 - 3

… …

Memory

8

Assembler Directives…

▪… are commands that are part of the assembler syntax,
but unrelated to the CPU ISA. They supply data to the program
and control the assembly process.

CS-173, © EPFL, Spring 2025

Source: CS-173 RV32I Reference Card

9

Assembler Directives
Sections

Directive Effect

.text Read-only section containing program (executable) code in assembly

• The .text sets .text as the current section.

• The lines that follow this directive will be assembled into the .text section, which
contains executable code.

• The .text section is the default section. Therefore, the assembler assembles code into
the .text section unless you use, for example, the .data directive to specify data section.

CS-173, © EPFL, Spring 2025

Notice the period

10

Assembler Directives
Sections

Directive Effect

.data Read-write section containing program variables

• The .data directive sets .data as the current section.

• The lines that follow will be assembled into the .data section.

• The .data section is commonly used to contain arrays of data or preinitialized variables.

CS-173, © EPFL, Spring 2025

11

Assembler Directives
Initialize Values (Data, Memory)

Directive Effect

.byte value1[,…, valuen] Initializes one or more successive bytes at the current location

• A value can be an expression that the assembler evaluates
and treats it as an 8-bit signed number, or a character string
enclosed in double quotes.

• In the case of a character string, each character in a string is a
separate value, and values are stored in consecutive bytes. With
little-endian ordering, the first byte occupies the eight least
significant bits of a full 32-bit word. The second byte occupies bits
eight through 15, while the third byte occupies bits 16 through 23.

• The assembler truncates values greater than eight bits
(stores only the least significant eight bits).

CS-173, © EPFL, Spring 2025

12

Assembler Directives
Initialize Values (Data, Memory)

Directive Effect

.asciiz Places at the current location an ASCII string followed by a null-terminator
(byte 0x00; https://en.wikipedia.org/wiki/Null-terminated_string)

• Character string must be enclosed in double quotes.

CS-173, © EPFL, Spring 2025

https://en.wikipedia.org/wiki/Null-terminated_string

13

Assembler Directives
Initialize Values (Data, Memory), Contd.

Directive Effect

.word value1[,…, valuen]

.uword value1[,…, valuen]

Initializes one or more successive words at the current section

• Each value is placed in a 32-bit word by itself and is aligned on a word
boundary.

• A value can be either an expression that the assembler evaluates
and treats as a 32-bit signed (.word) or unsigned (.uword) number,
or a character string enclosed in double quotes.

• In the case of a character string, each character in a string represents
a separate value and is stored alone in the least significant eight bits
of a 32-bit field, which is padded with zeros.

CS-173, © EPFL, Spring 2025

14

Assembler Directives
Defining Symbols

Directive Effect

.equ name, value Symbol definition

• Assigns value to a symbol name.

CS-173, © EPFL, Spring 2025

CS-173, © EPFL, Spring 2025 15

E
X

A
M

P
L

E
S

16

Assembler Directives
Example

▪Prepare for writing an assembly code that reads and analyzes n
elements of an array of bytes, and saves the result in memory

• Part 1: Initialization of variables and data

• Define n as a symbol, and set it to (10)10

• Initialize the array in memory with 16 randomly chosen hexadecimal numbers:
3F A7 5C 91 DE 02 6B B8 4E 13 C0 8D F4 29 7E 10

• Initialize the 32-bit result in memory to zero

• Part 2: Initialization of registers

• Copy n to register t0

• Copy the address of the array to register t1

• Copy the address of the result to register t2
CS-173, © EPFL, Spring 2025

E
X

A
M

P
L

E
S

Data

17

Assembler Directives
Solution, Assembly Code

.equ n, 10 # constant n = 10

.data

my_array_of_bytes: .byte 0x3F, 0xA7, 0x5C, 0x91 # array of bytes

.byte 0xDE, 0x02, 0x6B, 0xB8 # broken over several

.byte 0x4E, 0x13, 0xC0, 0x8D # lines of code

.byte 0xF4, 0x29, 0x7E, 0x10 # for readability

my_result: .word 0

CS-173, © EPFL, Spring 2025

▪ Part 1: Initialization of constants and data

• Define n as a constant, and set it to (10)10

• Initialize the array of bytes in memory with 16 randomly chosen hexadecimal numbers:
3F A7 5C 91 DE 02 6B B8 4E 13 C0 8D F4 29 7E 10

• Initialize the 32-bit result in memory to zero

E
X

A
M

P
L

E
S

18

Assembler Directives
Solution, Assembly Code

.text

li t0, n # load immediate, pseudoinstr.

la t1, my_array_of_bytes # load address, pseudoinstr.

la t2, my_result # load address, pseudoinstr.

CS-173, © EPFL, Spring 2025

Code

▪ Part 2: Initialization of registers

• Copy n to register t0

• Copy the address of the array to register t1

• Copy the address of the result to register t2

E
X

A
M

P
L

E
S

Data

19

Assembler Directives
Solution, Putting it All Together

.equ n, 10 # constant n = 10

.data

my_array_of_bytes: .byte 0x3F, 0xA7, 0x5C, 0x91 # array of bytes

.byte 0xDE, 0x02, 0x6B, 0xB8 # broken over several

.byte 0x4E, 0x13, 0xC0, 0x8D # lines of code

.byte 0xF4, 0x29, 0x7E, 0x10 # for readability

my_result: .word 0

.text

li t0, n # load immediate, pseudoinstr.

la t1, my_array_of_bytes # load address, pseudoinstr.

la t2, my_result # load address, pseudoinstr.

CS-173, © EPFL, Spring 2025

Code

E
X

A
M

P
L

E
S

20

Assembler Directives
Solution, Output from the Venus Simulator

Address +0 +1 +2 +3

… … … … …

0x10000018 00 00 00 00

0x10000014 00 00 00 00

0x10000010 00 00 00 00

0x1000000C F4 29 7E 10

0x10000008 4E 13 C0 8D

0x10000004 DE 02 6B B8

0x10000000 3F A7 5C 91

CS-173, © EPFL, Spring 2025

▪ Two-dimensional memory view
in the Venus Simulator (left)

▪ Data segment starts at address
0x1000 0000 in memory

▪ Registers

• x05 (t0) = 0x0000 000A

• x06 (t1) = 0x1000 0000

• x07 (t2) = 0x1000 0010

CS-173, © EPFL, Spring 2025 21

Pseudoinstructions
• li

• la

22CS-173, © EPFL, Spring 2025

© Anastasi17 / Adobe Stock

23

Load Immediate and Load Address
li, la

▪ li copies the immediate to a register

▪ la copies the address of a label to a register

CS-173, © EPFL, Spring 2025

Source: CS-173 RV32I Reference Card

24

li Pseudoinstruction
Usage

▪Recall: li copies the immediate to a register

▪Use li when imm is a constant or a symbol defined with .equ

CS-173, © EPFL, Spring 2025

E
X

A
M

P
L

E
S

25

Example: li

▪Recall: li copies the immediate to a register

▪ Recall: Use li when imm is a constant or a symbol

▪ Example:

CS-173, © EPFL, Spring 2025

.equ my_constant, 0x12345678 # symbol my_constant = 0x12345678

.text

li t0, my_constant # t0 = my_constant

li t1, 0x123 # t1 = 0x123

26

li Pseudoinstruction
Various Translations, Partial View

▪ Small immediate (imm "fits" in 12-bit signed imm space):
• li t0, 0x123

• Translation: addi t0, zero, 0x123

▪ Medium immediate:
• li t0, 0x12345678

• Translation: ?

CS-173, © EPFL, Spring 2025

27

Recall: Integer Register-Immediate Operations
U-type, Instruction LUI

▪ LUI: Load upper immediate; used to build 32-bit constants
• LUI places the 20-bit immediate value in the top 20 bits of the destination register

RF[rd], filling the lowest 12 bits with zeros

CS-173, © EPFL, Spring 2025

31 25 24 20 19 15 14 12 11 7 6 0

imm[31:12] rd opcode

20 5 7

28

li Pseudoinstruction
Various Translations, Partial View

▪ Small immediate (imm "fits" in 12-bit signed imm space):
• li t0, 0x123

• Translation: addi t0, zero, 0x123

▪ Medium immediate:
• li t0, 0x12345678

• Translation: lui t0, 0x12345 # t0 = 0x12345000
addi t0, t0, 0x678 # t0 = 0x12345000 + 0x678

CS-173, © EPFL, Spring 2025

29

li Translation, Contd.

▪Q: How is the instruction below translated in RV32I assembly?

li t0, 0x12345FF5

▪Hint: Attention, addi sign-extends the immediate, which would
result in performing addition with a negative number in this case

▪A: lui t0, 0x12346 # round up upper bits
addi t0, t0, -11 # correct lower bits

CS-173, © EPFL, Spring 2025

30

What Does “Fit” Mean?

▪ In li context, 12-bit imm "fits" if the most significant bit is zero

• Sign-extension keeps the number positive, and so the result
of addi is as expected

• Range of immediate imm that "fits" is -210 < imm < 210 - 1

▪ If the most significant bit of the immediate imm is one
• Sign-extension results in a negative value, and so the result

of addi is not as expected

• Solution:

CS-173, © EPFL, Spring 2025

li t0, 0x12345FF5
lui t0, 0x12346 # round up upper bits
addi t0, t0, -11 # correct lower bits

31

li Pseudoinstruction
Various Translations, Complete

▪ Small immediate(imm "fits" in 12-bit signed imm space):
• li t0, 0x123

• Translation: addi t0, zero, 0x123

▪ Medium immediate (lower 12 bits "fit" in signed 12-bit signed imm space):
• li t0, 0x12345678

• Translation: lui t0, 0x12345 # t0 = 0x12345000
addi t0, t0, 0x678 # t0 = 0x12345000 + 0x678

▪ Large immediate (lower 12 bits do not "fit" in signed 12-bit imm space):
• li t0, 0x12345FF5

• Translation: lui t0, 0x12346 # round up upper bits
addi t0, t0, -11 # correct lower bits

CS-173, © EPFL, Spring 2025

CS-173, © EPFL, Spring 2025 32

33

la Pseudoinstruction
Usage

▪Recall: la copies the address to a register

▪Use la when imm is a label

CS-173, © EPFL, Spring 2025

E
X

A
M

P
L

E
S

34

Example: la and li

CS-173, © EPFL, Spring 2025

.equ my_const, 0x555

.data

my_result: .word 0x07070707

.text

la t0, my_result # t0 = address of 0x07070707 in memory

lw t1, 0(t0) # t1 = mem[0 + t0] = mem[my_result] = 0x07070707

li t2, my_const # t2 = 0x555, symbol, note the use of pseudoinstr. li

sw t2, 0(t0) # mem[t0] = t2 = 0x555, overwriting 0x07070707

▪Recall: la copies the address to a register

▪ Recall: Use la when imm is a label

CS-173, © EPFL, Spring 2025 35

Do-While Loop
In Assembly

36CS-173, © EPFL, Spring 2025

© Anastasi17 / Adobe Stock

Do-While Loop
Methodology

initialization

loop

do {

…

…

…

} while (?)

37CS-173, © EPFL, Spring 2025

.equ …

.text

…

…

loop:

…

…

…

…

branch ? loop

?

loop:

E
X

A
M

P
L

E
S

38

Sum of an Array of Signed 32-bit Words
Loops in Assembly

▪Write a piece of assembly code to compute the sum of an array
of n signed 32-bit words in memory

▪ The array address is in register t1

▪ The array has 99 elements

▪ The final sum should reside in register t0
Ignore the possibility of overflow

CS-173, © EPFL, Spring 2025

E
X

A
M

P
L

E
S

39

Sum of an Array of Signed 32-bit Words
Solution

CS-173, © EPFL, Spring 2025

n = 99

t0 = 0

t2 = n

loop

do {

t0 = t0 + mem[t1]

t1 = t1 + 4

t2 = t2 - 1

} while (t2 != 0)

.equ n, 99

.text

…

…

loop:

…

…

…

…

bne ? loop

?

loop:

E
X

A
M

P
L

E
S

40

Sum of an Array of Signed 32-bit Words
Solution, Contd.

CS-173, © EPFL, Spring 2025

.equ n, 99

.text

li t0, 0

li t2, n # t2 = 99

loop:

lw t3, 0(t1) # mem[t1]

add t0, t0, t3

addi t1, t1, 4

addi t2, t2, -1

bnez t2, loop

?

loop:

n = 99

t0 = 0

t2 = n

loop

do {

t0 = t0 + mem[t1]

t1 = t1 + 4

t2 = t2 - 1

} while (t2 != 0)

Note: bnez rs1, imm bne rs1, zero, imm

If-Then-Else
In Assembly

41CS-173, © EPFL, Spring 2025

© Anastasi17 / Adobe Stock

If-Then-Else
Methodology

if (?) {

…

} else {

…

}

42CS-173, © EPFL, Spring 2025

.text

…

branch ? then_begin

else_begin:

…

j end_if

then_begin:

…

end_if:

…

?

then else

end_if

If-Then-Else
Methodology, Contd

if (?) {

…

} else {

…

}

43CS-173, © EPFL, Spring 2025

.text

…

branch ? then_begin

else_begin:

…

j end_if

then_begin:

…

end_if:

…

?

then else

end_if

E
X

A
M

P
L

E
S

44

If-Then-Else
Example

▪Write a piece of assembly code where

• If register t0 is 16, register t1 gets incremented

• Otherwise, t1 gets decremented

CS-173, © EPFL, Spring 2025

E
X

A
M

P
L

E
S

45

If-Then-Else
Solution

CS-173, © EPFL, Spring 2025

if (t0 == 16) {

t1 = t1 + 1

} else {

t1 = t1 – 1

}

.text

…

branch ? then_begin

else_begin:

…

j end_if

then_begin:

…

end_if:

…

?

then else

end_if

E
X

A
M

P
L

E
S

46

If-Then-Else
Solution, Contd.

CS-173, © EPFL, Spring 2025

if (t0 == 16) {

t1 = t1 + 1

} else {

t1 = t1 – 1

}

.text

li t2, 16 # t2 = 16

beq t0, t2, then_begin

else_begin:

addi t1, t1, -1

j end_if

then_begin:

addi t1, t1, 1

end_if:

…

?

then else

end_if

© Anastasi17 / Adobe Stock

RV32I Reference Card
• Now available on Moodle

• Will be distributed during the final exam

47CS-173, © EPFL, Spring 2025

CS-173, © EPFL, Spring 2025 48

