Computer Architecture

RISC-V Assembler Directives

CS-173 Fundamentals of Digital Systems

Mirjana Stojilovic
Spring 2025

)%

i

FUNDAMENTALEFO

D IGITAL

SYSTEMS

https://mirjanastojilovic.github.io/cs173/index.html

Previously on FDS

 Load (reading) from memory

* Store (ertmg) n memaory 0" ’ | © Supranee / Adobe Stock
« Conditional branches, unconditional jumps"

CS-173, © EPFL, Spring 2025

Quick Outline

» From Assembly Source Code to Executable

= Assembler Directives
« Example

= Pseudoinstructions
e 1i: L oad immediate
 1a: Load address

LJ LJ
........
) ()

= Do-while loop
o Example

s [f-Then-Else

« Example

CS-173, © EPFL, Spring 2025 3

© Anastasi17/ / Adobe Stock

Assembler Directives

© Anastasi17/ / Adobe Stock

CS-173, © EPFL, Spring 2025 4

From Assembly Source Code To Executable

Compilation, Assembly Process

1i

1i

sll
sll
sll
add
nop

te, 7
t1, 1

t2, to, t1
t3, t2, t1
t3, t3, t1
t3, t3, t2

4

Source code

in RISC-V assembly

CS-173, © EPFL, Spring 2025

»% »

Address

0x00000018
0x00000014
0x00000010
0x0000000C
0x00000008
0x00000004
0Xx00000000

+0

00010011
00110011
00110011
00110011
10110011
00010011
10010011

+1

00000000
00001110
00011110
10011110
10010011
00000011
00000010

+2

00000000
01111110
01101110
01100011
01100010
00010000
01110000

+3

00000000
00000000
00000000
00000000
00000000
00000000
00000000

y

Assembler

Responsible for the translation from
source code to the executable in binary;
the process is also known as compilation

The executable (the RISC-V program)

in binary format, in memory

Von-Neuman Architecture

= Recall: Unified memory
e Instructions and data reside
INn the same memory
= Assembly source code often
contains more than one section
1. Code (program instructions)
2. Data (initialization, results)

CS-173, © EPFL, Spring 2025

Index

(Address)

Memory

0

mem|0]

1

mem|1]

2

mem|2]

2323

mem|[232 - 3]

2322

mem|[232 - 2]

232 - 1

mem|[232 - 1]

Data

Code

Von-Neuman Architecture

= The compilation process is responsible
for creating separate memory regions
for code and data

= \When writing a program in assembly,
one can mix code and data sections as
we like, identifying them with special
labels (assembler directives)

CS-173, © EPFL, Spring 2025

Index

(Address) Memory

mem|0]

mem|1]

mem|2]

2323

mem|[232 - 3]

2322

mem|[232 - 2]

232 . 1

mem|[232 - 1]

Data

Code

Assembler Directives... ?F

= . are commands that are part of the assembler syntax,
but unrelated to the CPU ISA. They supply data to the program
and control the assembly process.

1. Assembler Directives

Directive

Effect

.text
.data

.asciiz "Hello, World!"

.byte 0xC, OxA, OxF
.word 0xCAFE
.equ coffee, OxCAFE

Switch to the code segment and place what follows there
Switch to the data segment and place what follows there

Place at current location an ASCII string followed by a null-terminator
Place at current location value(s) as byte(s)

Place at current location value(s) as 32-bit word(s)
Define a symbol as a constant

CS-173, © EPFL, Spring 2025

Source: CS-173 RV32l Reference Card

Assembler Directives %Q
Sections

Directive Effect
.text Read-only section containing program (executable) code in assembly

/

Noti . e The .text sets .text as the current section.
otice the period

« The lines that follow this directive will be assembled into the .text section, which
contains executable code.

« The .text section is the default section. Therefore, the assembler assembles code into
the .text section unless you use, for example, the .data directive to specify data section.

CS-173, © EPFL, Spring 2025

Assembler Directives

Sections

Directive Effect
.data Read-write section containing program variables

« The .data directive sets .data as the current section.
 The lines that follow will be assembled into the .data section.

« The .data section is commonly used to contain arrays of data or preinitialized variables.

Assembler Directives

Initialize Values (Data, Memory)

Directive Effect

.byte value,[,.., value,] Initializes one or more successive bytes at the current location

» A value can be an expression that the assembler evaluates
and treats it as an 8-bit signed number, or a character string
enclosed in double quotes.

* Inthe case of a character string, each character in a string is a
separate value, and values are stored in consecutive bytes. With
little-endian ordering, the first byte occupies the eight least
significant bits of a full 32-bit word. The second byte occupies bits
eight through 15, while the third byte occupies bits 16 through 23.

« The assembler truncates values greater than eight bits
(stores only the least significant eight bits).

Assembler Directives

Initialize Values (Data, Memory)

Directive Effect

.asciiz Places at the current location an ASCII string followed by a null-terminator
(byte 0x00; https://en.wikipedia.org/wiki/Null-terminated_string)

« Character string must be enclosed in double quotes.

CS-173, © EPFL, Spring 2025

oro

0.

12

https://en.wikipedia.org/wiki/Null-terminated_string

Assembler Directives

Initialize Values (Data, Memory), Contd.

Directive Effect
.word value,[,.., value,] Initializes one or more successive words at the current section

-uword value,[,.., value,] « Each value is placed in a 32-bit word by itself and is aligned on a word

boundary.

« Avalue can be either an expression that the assembler evaluates
and treats as a 32-bit signed (.word) or unsigned (.uword) number,
or a character string enclosed in double quotes.

« Inthe case of a character string, each character in a string represents
a separate value and is stored alone in the least significant eight bits
of a 32-bit field, which is padded with zeros.

Assembler Directives

Defining Symbols
Directive Effect

.equ name, value Symbol definition

« Assigns value to a symbol name.

CS-173, © EPFL, Spring 2025

14

CS-173, © EPFL, Spring 2025

15

(7]
i
—
o
=
<
x
1]

Assembler Directives

Example

= Prepare for writing an assembly code that reads and analyzes n
elements of an array of bytes, and saves the result in memory

e Part 1: Initialization of variables and data

« Define n as a symbol, and set it to (10),,

* |nitialize the array in memory with 16 randomly chosen hexadecimal numbers:
3FA75C91 DE026BB84E 13 C0O8D F4297E10

* |nitialize the 32-bit result in memory to zero

« Part 2: Initialization of registers

« Copy ntoregister to
« Copy the address of the array to register t1

» Copy the address of the result to register t2
CS-173, © EPFL, Spring 2025

16

Assembler Directives

Solution, Assembly Code

.equ n, 10 # constant n = 10
.data Data
my_array_of bytes: .byte ©Ox3F, OxA7, Ox5C, Ox91 # array of bytes

.byte OxXDE, 0x02, Ox6B, OxB8 # broken over several

.byte ©Ox4E, ox13, 0xCO, Ox8D # lines of code

.byte OxF4, 0x29, Ox7E, 0x10 # for readability

EXAMPLES

my_result: .word ©

= Part 1: Initialization of constants and data
« Define n as a constant, and set it to (10)4,

* |nitialize the array of bytes in memory with 16 randomly chosen hexadecimal numbers:
3F A7 5C91 DE026BB84E 13 C08D F4297E 10

* |nitialize the 32-bit result in memory to zero

CS-173, © EPFL, Spring 2025 17

Assembler Directives

Solution, Assembly Code

= Part 2: Initialization of registers
« Copy ntoregister to
« Copy the address of the array to register t1
» Copy the address of the result to register t2

EXAMPLES

.text Code
1li t0, n # load immediate, pseudoinstr.

la t1, my_array_of bytes # load address, pseudoinstr.

la t2, my_result # load address, pseudoinstr.

CS-173, © EPFL, Spring 2025 18

(7]
i
—
o
=
<
x
1]

Assembler Directives

Solution, Putting it All Together

.equ n, 10
.data
my_array_of bytes:

my_result:
. text
1li t0, n

.byte
.byte
.byte
.byte

.word

la t1, my_array_of bytes

la t2, my_result

CS-173, © EPFL, Spring 2025

Ox3F,
OxDE,
OX4E,
OxF4,

OxA7,
ox02,
ox13,
0x29,

ox5C,
ox6B,
oxCo,
OX7E,

o0x91
OxB8
ox8D
0x10

H H H H

constant n = 10

Data
array of bytes
broken over several
lines of code
for readability
Code

load immediate, pseudoinstr.
load address, pseudoinstr.

load address, pseudoinstr.

19

(7]
i
—
o
=
<
x
1]

Assembler Directives

Solution, Output from the Venus Simulator

Address

0x10000018

0x10000014

0x10000010

0x1000000C

0x10000008

0x10000004

0x10000000

CS-173, © EPFL, Spring 2025

+0

00

00

00

F4

4E

DE

3F

+1

00

00

00

29

13

02

A7

+2

00

00

00

7E

co

6B

5C

+3

00

00

00

10

8D

B8

91

= Two-dimensional memory view
in the Venus Simulator (left)

= Data segment starts at address

©x1000 0000 In memory

» Registers
« x05 (t0)
* X06 (t1)
« x07 (t2)

OX0000 O0OA
0x1000 0000
0x1000 0010

20

CS-173, © EPFL, Spring 2025

27

Pseudoinstructions
e 11
e]a

© Anastasi17/ / Adobe Stock

CS-173, © EPFL, Spring 2025 22

Load Immediate and Load Address

1i, 1a

Instruction
or Pseudoinstruction

Pseudocode

Type funct?7 funct3 opcode
or Translation

Move
nop
mv rd,
¥
rd,
lui rd,

rsi
imm
imm
imm

Nothing

rd < rsl

rd < immT

rd + address of imm}
rd < imm < 12

addi zero, zero, 0
addi rd, rsi, O
Various translations
Various translations
U 0x37

= 1i copies the immediate to a register
= 1a copies the address of a label to a register

CS-173, © EPFL, Spring 2025

Source: CS-173 RV32I Reference Card

23

1i Pseudoinstruction

Usage

= Recall: 1i copies the immediate to a register
= Use 1i when imm is a constant or a symbol defined with .equ

(7]
w
—
o
=
<
>
]

Example: 1i

= Recall: 1i copies the immediate to a register
= Recall: Use 1i when imm is a constant or a symbol

= Example:
.equ my_constant, 0x12345678 # symbol my constant = 0x12345678
. text
1li t0, my_constant # t0 = my _constant
1i t1, ox123 # tl1 = ox123

CS-173, © EPFL, Spring 2025

25

1i Pseudoinstruction

Various Translations, Partial View

= Small immediate (imm "fits" in 12-bit signed imm space):
+ 1i t@, 0x123
 Translation: addi t@, zero, 0x123

= Medium immediate:
« 1i t0, ©x12345678
e Translation: ?

Recall: Integer Register-immediate Operations

U-type, Instruction LUI

3 F MU 0 1m 5 1" n [0

imm[31:12] rd opcode

20 S /

= LUI: Load upper immediate; used to build 32-bit constants

« LUI places the 20-bit immediate value in the top 20 bits of the destination register
RF[rd], filling the lowest 12 bits with zeros

1i Pseudoinstruction

Various Translations,

Partial View

= Small immediate (imm "fits" in 12-bit signed imm space):

« 1i to, ox123
 Translation: a

ddi to, zero, 0x123

= Medium immediate:

- 1i t0, 0Ox12

e Translation: lui

CS-173, © EPFL, Spring 2025

345678
t0, 0x12345 # to

addi to, tO, Ox678 # to

©x12345000
0x12345000 + Ox67/8

28

1i Translation, Contd.

= Q: How is the instruction below translated in RV32| assembly?

1i t@, Ox12345FF5

» Hint: Attention, addi sign-extends the immediate, which would
result in performing addition with a negative number in this case

= A: 1ui t@, 0x12346 # round up upper bits
addi to, tO, -11 # correct lower bits

CS-173, © EPFL, Spring 2025

29

What Does “Fit” Mean?

= |n 1i context, 12-bit imm "fits" if the most significant bit is zero

« Sign-extension keeps the number positive, and so the result
of addi is as expected

« Range of immediate imm that "fits" is -2 <imm < 270 - 1

= |f the most significant bit of the immediate imm is one

 Sign-extension results in a negative value, and so the result
of addi is not as expected

 Solution: % 11 te, @x12345FF5
lui tO, 0x12346 # round up upper bits
addi to, teo, -11 # correct lower bits

1i Pseudoinstruction

Various Translations, Complete

= Small immediate(imm "fits" in 12-bit signed imm space):

« 1i to, 0x123
* Translation: addi t@, zero, 0x123
= Medium immediate (lower 12 bits "fit" in signed 12-bit signed imm space)

« 11 tO, 0x12345678
* Translation: lui t@, 0x12345 # t0 = 0x12345000
0x12345000 + Ox678

addi te, te, @x678 # to
in signed 12-bit imm space):

= L arge immediate (lower 12 bits do not "fit"

e 1i t@, Ox12345FF5

* Translation: lui t©, 6x12346
addi te, to, -11

round up upper bits
correct lower bits

CS-173, © EPFL, Spring 2025

31

CS-173, © EPFL, Spring 2025

32

1a Pseudoinstruction

Usage

» Recall: 1a copies the address to a register
= Use 1a when immis a label

Example: 1a and 1i

= Recall: 1a copies the address to a register
= Recall: Use 1a when imm is a label

.equ my_const, Ox555

EXAMPLES

.data

my_result: .word ©x07070707

.text

la t0, my_result # t0 = address of 0x07070707 in memory

lw t1, o(te) # t1l = mem[@ + tO] = mem[my_result] = 0x07070707

1li t2, my const # t2 = Ox555, symbol, note the use of pseudoinstr. 1li
sw t2, 0(t0) # mem[tO] = t2 = Ox555, overwriting 0x07070707

CS-173, © EPFL, Spring 2025

CS-173, © EPFL, Spring 2025

35

Do-While Loop

In Assembly

© Anastasi17/ / Adobe Stock

CS-173, © EPFL, Spring 2025 36

Do-While Loop

Methodology
.equ ..
.text
loop: l # initialization
loop
l do { loop: <
2 -
l } while (?)

branch ? loop —

CS-173, © EPFL, Spring 2025

(7]
i
—
o
=
<
x
1]

Sum of an Array of Signed 32-bit Words

Loops in Assembly

= \Write a piece of assembly code to compute the sum of an array
of n signed 32-bit words in memory

» The array address is in register t1
= The array has 99 elements

= The final sum should reside in register t@

Ignore the possibility of overflow

CS-173, © EPFL, Spring 2025

38

Sum of an Array of Signed 32-bit Words

Solution
.equ n, 99
n =99 text
1 # to = 0
loop:
t2 = n
(%]
= # loo
§ P loop:
i 1 do
t0 = t0 + mem[tl]
? —
tl = tl + 4
l t2 = t2 - 1

3 | =
} while (t2 !=) bne ? loop

CS-173, © EPFL, Spring 2025

Sum of an Array of Signed 32-bit Words

Solution, Contd.

.equ n, 99
n =99 . text
loop: l e =0 1i to, ©
’ o Fre s 1i t2, n # t2 = 99
lw €3, o(tl) # mem[t1l]
, L t0 = t0 + mem[tl] add 1o, to, t3
th=1tl+4 addi t1, t1, 4
1 tz =12 -1 addi t2, t2, -1
} while (t2 != @)

bnez t2, loop —

CS-173, © EPFL, Spring 2025 Note: bnez rs1, imm < bners1, zero, imm “°

If-Then-Else

In Assembly

© Anastasi17/ / Adobe Stock

CS-173, © EPFL, Spring 2025 41

If-Then-Else

Methodology

?
then |7 else—I

end_if l

if (?) {
} else {
}

.text

branch ? then_begin

else_begin:

j end_if
then_begin:

end_if:

If-Then-Else

Methodology, Contd

?
then |7 else—I

T 7T

end_if l

>

CS-173, © EPFL, Spring 2025

.text

branch ? then_begin

else_begin:

j end_if

then_begin:

<
end _if:

<:£:

43

(7]
i
—
o
=
<
>
]

If-Then-Else

Example

= \Write a piece of assembly code where
e |f register to is 16, register t1 gets incremented
« Otherwise, t1 gets decremented

CS-173, © EPFL, Spring 2025

44

(7]
i
—
o
=
<
>
]

If-Then-Else

Solution

?
then Iﬁ else_I

end_if l

CS-173, © EPFL, Spring 2025

if (to

t1l

} else

t1

16) {
+ 1

text

branch ? then_begin

else_begin:

j end_if
then_begin:

end _if:

45

(7]
i
—
o
=
<
>
]

If-Then-Else

Solution, Contd.

?
then Iﬁ else_I

end_if l

CS-173, © EPFL, Spring 2025

if (to

t1l

} else

t1

16) {
+ 1

.text
1i t2, 16 # t2 = 16
beq t0, t2, then_begin
else_begin:
addi t1, t1, -1
j end_if
then_begin:
addi t1, t1, 1

end _if:

46

RV32l Reference Card

« Now available on Moodle

« Will be distributed during the final exam

© Anastasi17/ / Adobe Stock

CS-173, © EPFL, Spring 2025 47

CS-173, © EPFL, Spring 2025

48

